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Abstract: In this paper, in situ V2C-reinforced Cu composites were successfully fabricated by hot
pressing at 750 ◦C under 25 MPa using Cu and V2SnC powders. Due to decomposition of V2SnC
to V2C and Sn during sintering, Sn atoms entered the crystal structure of Cu. Therefore, final
compositions of composites consisted of Cu(Sn) and V2C phases. Here, copper composites with
0, 5, 10, 20, and 30 vol.% V2C were designed. Their microstructures and physical and mechanical
properties were systematically investigated. It was observed that with increasing V2C content, electrical
conductivity decreased from 0.589× 108 S·m−1 to 0.034× 108 S·m−1 and thermal conductivity decreased
from 384.36 W·m−1·K−1 to 24.65 W·m−1·K−1, while Vickers hardness increased from 52.6 HV to 334 HV.
Furthermore, it was found that composites with 20 vol.% V2C had the highest tensile strength (440 MPa).

Keywords: copper; metal matrix composite; in situ; physical properties; mechanical properties

1. Introduction

Copper has high electrical conductivity, high ductility, high chemical stability, and
excellent thermal properties [1]. To date, Cu has been widely used in electrical devices,
electrodes, and pantography [2]. However, low strength and weak wear resistance have
greatly limited its application. In order to solve this problem, dispersion strengthening (DS)
has been widely employed [3]. It was found that by adding a second phase to the copper
matrix, dispersed particles can reinforce the substrate by crack bridging, crack deflection,
second-phase pulling out, and grain refinement [4–7]. Because traditional ceramics have
high hardness and Young’s modulus, ceramic-particle-reinforced Cu composites have been
extensively investigated. For instance, Tao et al. prepared Ni@Al2O3/Cu composites by
utilizing spark plasma sintering (SPS) to densify Ni coated Al2O3 with copper. By modi-
fying the poor wettability between Cu and Al2O3, the fracture toughness of composites
was significantly improved. Oanh, N.T.H et al. significantly enhanced the hardness of
Cu by the addition of TiC [8–14]. However, traditional ceramics (Al2O3, SiC et al.) are
usually detrimental to the electrical and thermal properties of copper, as they are all insula-
tors. Therefore, research on the development of alternative materials with good electrical
properties, high hardness, and good strength has become important.

Recently, layered compounds such as Mn+1AXn phases, which can reinforce copper
while maintaining excellent electrical and thermal properties, have attracted huge research
interest. Mn+1AXn phases where M is an early transition metal, A is a IIIA or IVA group
element, X is carbon, nitrogen, or boron, and n is an integer commonly equal to 1, 2,
or 3 are good additives to reinforce a Cu matrix. They contain both metal bonds and
covalent bonds in crystal structures, exhibiting combined properties of metals and ceramics,
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such as high bending strength, high Young’s modulus, and high thermal and electrical
conductivities [15–22]. In addition, they have a good wettability with copper [23–25]. In
previous works, it was reported that the introduction of MAX phase and MAX-derived
MX into copper effectively enhanced the hardness and tensile strength of composites [26].
MAX-derived MX is formed due to precipitation of A atoms under high temperatures
and pressures. As a result, a similar layer structure to that of MAX phase can be obtained.
Dudina et al. [27] prepared Ti3SiC2 (5 vol.%)-Cu composites by spark plasma sintering (SPS).
The electrical conductivity and hardness of composites were 21.2% IACS and 152 HV100,
respectively. Wu, J., et al. [28] also prepared Ti2SnC (1 vol.%)-Cu composite by hot pressing
and increased the tensile strength of Cu to 336 MPa, with only 24.4% of the electrical
conductivity lost. Zhang, J., et al. [26] reported on TiCx-Cu composites with enhanced
tensile strength obtained by sintering of Cu with Ti3AlC2.

In this work, in order to reinforce copper composites, a new MAX phase of V2SnC
was introduced. Sn-based MAX phase (V2SnC) exhibits high electrical conductivity, self-
lubrication and low hardness, which are promising to be used as addtions to reinforce
Cu [29]. It is believed that this research will enrich the design and fabrication of Cu-
based composites. Interestingly, it was found that V2SnC completely decomposed to
V2C and Sn, forming V2SnC-derived V2C, and Sn dissolved into copper to form a solid
solution [30–33]. The microstructure and physical and mechanical properties of composites
were systematically investigated. Moreover, the positive reinforcement effect of in situ
V2SnC-derived V2C particles on the Cu matrix was examined.

2. Experimental Procedure

Commercial element powders of V (300 mesh, 99.9%, Qinhuangdao ENO High-Tech
Material Development Co., LTD., Qinhuangdao, China), Sn (300 mesh, 99.9%, Qinhuangdao
ENO High-Tech Material Development Co., LTD., Qinhuangdao, China), and C (1500 mesh,
99.9%, Qinhuangdao ENO High-Tech Material Development Co., LTD., Qinhuangdao,
China) were utilized as raw materials to synthesize V2SnC. The process of synthesis of
V2SnC is the same as in previous work researched by the author’s lab [29].

Commercial copper powder (300 mesh, 99.9%, Qinhuangdao ENO High-Tech Material
Development Co., LTD., Qinhuangdao, China) and as-prepared V2SnC powder (200 mesh)
were mixed by ball milling in an agate jar for 12 h with a rotating speed of 150 rpm.
The powder-to-ball ratio was 1:10. The content of V2C in the copper composites was
0 vol.%, 5 vol.%, 10 vol.%, 20 vol.%, and 30 vol.%, respectively. After drying in an
oven (101-WSB, Supo Corp., Shaoxing, China) for 24 h, the powder mixture was put into
a graphite die and consolidated at 750 ◦C for 60 min under a pressure of 25 MPa in a hot
pressing furnace (ZT-50-24Y, Chenhua Corp., Shanghai, China). The whole sintering pro-
cess was carried out in vacuum with a heating rate of 20 ◦C/min. After sintering, samples
were cooled naturally in the hot pressing chamber. Finally, contaminations on the surface
of samples were removed by a diamond grinding wheel. All samples were machined by
electrical discharged machining (EDM) and polished down to 1.0 µm diamond grids.

Phase composition of samples was examined by an X-ray diffractometer (D8 AD-
VANCE, Bruker, Germany) with Cu Kα radiation (λ = 1.54178 Å). The crystal parameters
of copper were calculated using two basic relationships. Firstly, for face-centered cubic:
d(hkl) = 1

α
a√

h2+k2+l2
, where h, k, and l are indices of crystallographic plane; α is a constant

that equals 1 when h, k, and l are all odd numbers; and a is the lattice constant. The second
relationship is the Bragg equation: 2dsinθ = n λ, where d is the crystalline interplanar
spacing, θ is the diffraction angle, and λ is the wave length of X-ray [34]. By utilizing
XRD data, lattice constants of copper were roughly calculated. Elemental distribution of
the composites was analyzed by a field emission scanning electron microscope (Inspect
F50, FEI, Hillsboro, OR, US) equipped with an energy-dispersive spectrometer (EDAX,
Super octane, Hillsboro, OR, US). The polished and etched surfaces (5g FeCl3, 50 mL HCl,
100 mL H2O) of composites were examined by an optical microscope (XZJ-L2030, Phenix,
Shangrao, China).
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Density of as-prepared Cu composites was measured by Archimedes’ method in distilled
water. Electrical conductivity of specimens (dimension: 1 mm× 1 mm× 10 mm) was measured
by a resistivity tester machine (FT-300A1, Ningbo Rooko Instrument Co., Ltd., Ningbo, China).
Thermal conductivity of samples (dimension: Ø12.7 mm × 3 mm) was measured by a laser
thermal conductivity meter (NETZSCH LFA467, Selb, Germany, reference material: Cu) at
room temperature.

Hardness of specimens was measured by a Vickers hardness tester (HVS-50, Lianer
Corp., Shanghai, China) by a load of 10 N and dwelling 15 s. Samples were machined by
wire-electrode cutting to a dimension of 24 mm × 10 mm × 1 mm (3 samples) for tensile
strength measurements (YC-100KN, Yice Corp., Ningbo, China, gauge length: 17.80 mm,
moving speed: 1 mm/min). To investigate the damage mechanisms, the fracture surface of
specimens was examined by SEM.

3. Results and Discussion
3.1. Phase Composition and Microstructure

Figure 1 compares XRD patterns of the initial powder mixture and as-prepared copper
composites. It can be seen that in the initial mixture, diffraction peaks of Cu were strong,
and weak peaks of V2SnC and Sn were detected [35] (Figure 1a). Figure 1b–e show
XRD spectra of S1, S2, S3, and S4, respectively, corresponding to 5%, 10%, 20%, and 30%
volume content of V2C. Diffraction peaks of V2SnC and Sn disappeared, and those of
V2C occurred. It seems that during the hot pressing, V2SnC was completely decomposed
into V2C and Sn, and Sn entered the crystal structure of Cu to form a solid solution.
Here, the space group of V2C is P63/mmc (PDF#73-1302), which is the same as that of
V2SnC. With increasing the content of V2C, diffraction peaks of Cu shifted to lower angles.
The shift of diffraction peaks of Cu to lower angles indicates that the lattice constant of
Cu (Face centered cubic, a = b = c) increased by forming a Cu-Sn solid solution, considering
that the atomic radius of copper is 1.57 Å and that of Sn is 1.72 Å [36]. By calculating, it was
confirmed that with the rise in of V2C content, the crystal parameter of copper increased from
3.6001 Å to 3.7192 Å (Table 1), corresponding to the higher solid-solution content of Sn [37].
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Table 1. Calculated lattice constant of Cu based on the XRD patterns.

Composites Pure Cu S1 S2 S3 S4

Lattice constant (Å)
(a = b = c)

3.6001 3.6181 3.6553 3.6806 3.7192

Figure 2 shows the element distribution of V, Sn, and Cu. It can be seen that V element
existed in the region of black particles, corresponding to the V2C phase (Figure 2a,b).
Sn and Cu elements had the same distribution region, presenting a homogeneous, solid
solution (Figure 2c,d). These results support the conclusion that Sn dissolved into copper
to form a solid solution.
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Figure 2. (a) Scanning electron microscope (SEM) image of Cu composite with 10 vol.% V2C and
element distribution in the composite: (b) V element, (c) Sn element, and (d) Cu element.

The microstructure of the etched surface of pure Cu and Cu-5 vol.% V2C composite is
shown in Figure 3a,b. As shown, there was no obvious pore on the surface of pure Cu or
the Cu composite. High sintering temperature and long holding time were conductive to
the diffusion of Cu. The grain size of pure Cu prepared by hot pressing was as large as
50 µm (Figure 3a). The introduction of V2C into the Cu matrix can refine the grain size.
Consequently, the grain size of the Cu composite was smaller than that of pure Cu, as
shown in Figure 3b.
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The tensile fracture surface of pure copper and Cu composites was examined (Figure 4).
As shown in Figure 4a, the fracture surface of pure copper was characterized by dimples,
presenting a typical fracture feature of metals. The diameter of dimples was about 8 µm.
For the Cu-5 vol.% V2C composite, tear ridges were clearly observed, indicating a great
plastic deformation of Cu grains before fracture. In addition to the fractured V2C particles,
some holes formed during the tensile process (Figure 4b). Figure 4c–e show the tensile
sections of Cu composites with 10, 20, and 30 vol.% V2C respectively. With increasing V2C
content, the number of tear ridges decreased gradually. Especially in the Cu composite with
30 vol.% V2C, tear ridges disappeared, and only fractured V2C particles were observed.
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3.2. Physical Properties

Figure 5 shows the measured density of composites as a function of V2C content. With
increasing content of V2C, the density of pure Cu, S1, S2, S3, and S4 was 8.870 g·cm−3,
8.706 g·cm−3, 8.521 g·cm−3, 8.095 g·cm−3, and 7.709 g·cm−3, respectively. The calculated
relative density of the composites was 99%, 98.9%, 98.7%, 97.6%, and 96.8%, respectively.
Compared with pure Cu, the density of Cu composites with 5, 10, 20, and 30 vol.% V2C was
decreased by 1.8%, 3.9%, 8.7%, and 13.1%, respectively. The continuous decrease in density
was due to the lower density of V2C (5.63 g·cm−3) compared to that of Cu (8.96 g·cm−3).
The introduction of more V2C undoubtedly reduces the density of composites.

The measured electrical resistivity and electrical conductivity of pure Cu, S1, S2,
S3, and S4 samples is shown in Figure 6. As can be seen, electrical resistivity showed a
linear change with increasing V2C content. The electrical conductivity of pure Cu was
0.589 × 108 S·m−1, and that of Cu composites with 5 vol.% V2C, 10 vol.% V2C, 20 vol.%
V2C, and 30 vol.% V2C was 0.180 × 108 S·m−1, 0.099 × 108 S·m−1, 0.052 × 108 S·m−1, and
0.034 × 108 S·m−1, respectively. Interestingly, it was observed that electrical conductivity
of the composite had a considerable decrease when V2C content was 5 vol.%. Then,
the electrical conductivity of composites decreased continuously with increasing V2C
content. V2C in the matrix increased the scattering of electrons. It is known that electrical
conductivity of metallic materials mainly depends on the scattering of electrons [38].
Consequently, the continuous decrease in electrical conductivity of Cu composites with
more V2C content was probably related to three reasons: (1) electrical conductivity of
V2C is lower than that of copper; (2) boundaries of refined copper grains enhanced the
electron scattering; (3) a solid solution of Sn in the crystal structure of Cu induced the lattice
distortion. What is worth mentioning is that the electrical conductivity (0.034 × 108 S·m−1)
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of the Cu composite with 30 vol.% V2C still met the requirement of a Cu-based slider
(≥0.0286 × 108 S·m−1, TB/T1842.1-2002). As a result, the composites retained good
electrical properties.
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Furthermore, in order to analyze the effect of V2C content on thermal properties
of Cu composites, the thermal conductivity and thermal diffusivity of composites were
tested (Figure 7). Pure copper prepared by hot pressing had a high thermal conductivity of
384.36 W·m−1·K−1, and those of the S1, S2, S3, and S4 specimens were 135.75 W·m−1·K−1,
73.10 W·m−1·K−1, 37.46 W·m−1·K−1, and 24.65 W·m−1·K−1, respectively. The noticeable
decrease in thermal conductivity might be attributed to following reasons [39–41]: (1) the
thermal conductivity of V2C is lower compared to that of copper; (2) more grain boundaries
of Cu and V2C inhibited the movement of electrons; (3) the solid solution of Sn raised the
crystal mismatch of Cu. In addition, thermal diffusivity of Cu composites shows the same
decreasing tendency, reducing from 104.99 mm2·s−1 for pure Cu to 7.61 mm2·s−1 for Cu
composite with 30 vol.% V2C.
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3.3. Mechanical Properties

Figure 8 shows the Vickers hardness of Cu composites as a function of V2C content.
The hardness increased from 56.2 HV for pure Cu to 334 HV for the Cu composite with
30 vol.% V2C. The increase in hardness can be attributed to the fact that hardness of V2C is
higher than that of copper. Figure 9 shows variations in tensile strength of Cu composites
with different V2C content. For the pure copper sample, the tensile strength was only
160 MPa. With the addition of more V2C, the tensile strength of composites effectively
rose to 322 MPa for Cu-5 vol.% V2C composite, 362 MPa for Cu-10 vol.% V2C composite,
and 440 MPa for Cu-20 vol.% V2C composite, whereas when 30 vol.% V2C was added, the
tensile strength of the composite degraded to 349 MPa. We speculate that addition of V2C
particles refined the Cu grains in the composites, as discussed in Figure 3. Consequently,
according to the Hall-Petch rule, when the grain size of copper was decreased, the strength
of the composite increased correspondingly [42]. Additionally, solid solution strengthening
may also play another important role in reinforcing Cu composites due to the formation of
a Cu(Sn) solid solution [43,44]. However, the tensile strength of the composite decreased
when V2C content exceeded a certain value (30 vol.%). More V2C can embrittle the matrix,
and defects distributed along the V2C made cracks spread easily. Therefore, the tensile
strength decreased.
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Properties of different in situ MX-Cu composites are listed in Table 2. The in situ
TiCx-reinforced copper composites were prepared by hot pressing, and TiCx was derived
from Ti3AlC2. As a term of comparison, although both V2C-Cu and TiCx-Cu composites
have similar electrical properties, the tensile strength of the V2C-Cu composite is slightly
higher. Accordingly, the V2C-Cu composite in the present study achieved a high tensile
strength and obtained excellent electrical properties.

Table 2. Tensile strength and electrical conductivity of the different in situ MX-Cu composites.

Composites Tensile Strength (MPa)
Electrical

Conductivity
(%IACS)

Preparing Method Reference

Pure Cu 160 98 Hot pressing This work

V2C (5 vol.%)-Cu 332 31.4

V2C (10 vol.%)-Cu 362 17

V2C (20 vol.%)-Cu 440 9

V2C (30 vol.%)-Cu 349 5.8

Pure Cu 130 84.7 Hot pressing Ref. [25]

TiCx (5 vol.%)-Cu 315 30

TiCx (10 vol.%)-Cu 356 16

TiCx (20 vol.%)-Cu 392 9

TiCx (30 vol.%)-Cu 299 6

4. Conclusions

Dense Cu composites with different V2C contents (0 vol.%, 5 vol.%, 10 vol.%, 20 vol.%,
and 30 vol.%) were successfully fabricated by hot pressing Cu and V2SnC as initial materials.
The phase composition, microstructure, physical, and mechanical properties of composites
were systematically investigated, and the obtained conclusions are summarized as follows:

i. V2SnC completely decomposed into V2C and Sn because the Sn-based MAX phase
easily precipitated Sn atoms under high temperatures and pressures. Sn entered
the crystal structure of copper to form a solid solution. As a result of increasing
V2SnC content, the lattice constant of copper increased from 3.6001 Å to 3.7192 Å.
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Due to the decomposition of V2SnC, phase compositions of the composite consisted
of V2C and copper.

ii. With increasing V2C content, the scattering of electrons was improved. Consequently, the
electrical and thermal conductivities of the composites decreased from 0.589× 108 S·m−1

to 0.034× 108 S·m−1 and from 384.36 W·m−1·K−1 to 24.65 W·m−1·K−1, respectively.
iii. The introduction of V2C resulted in reinforcement of the Cu matrix by dispersion

strengthening, grain refinement, and solid-solution strengthening. As a result, the
hardness and strength of composite were improved. The Vickers hardness of compos-
ites increased from 52.6 HV to 334 HV with increasing V2C content. The Cu composite
with 20 vol.% V2C had the highest tensile strength of 440 MPa, which was nearly
three times that of pure Cu (160 MPa). When the content of V2C exceeded 30 vol.%,
the tensile strength decreased due to embrittlement.
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